メニューに戻る

15:40 にページが自動更新されます。

微分(2)

\( u, v \) が \( x \) の関数で微分可能であり,\( k, a \) が定数とすると
\( \left( k u \right)' = k u' \)
\( \left( u \pm v\right)' = u' \pm v' \)
\( \left( u v\right)' = u' v + u v' \)
\( \Large \left( \frac{u}{v} \right)' \normalsize = \left( u v^{-1}\right)' = u' v^{-1} + u \left( v^{-1} \right)'\)
\( = u' v^{-1} + u \times -v^{-2} \times v'\)
\( = \Large \frac{u' v - u v'}{v^2} \)

学籍番号
氏  名
微分を行い、解を選択肢から選びなさい.
(A) \(y = \log{\left(\cos{\left(x \right)} \right)}\) \( \frac{dy}{dx} = \) ()
(B) \(y = x \sin{\left(x \right)}\) \( \frac{dy}{dx} = \) ()
(C) \(y = \frac{1}{\sin{\left(x \right)}}\) \( \frac{dy}{dx} = \) ()
(D) \(y = \frac{\cos{\left(x \right)}}{\sin{\left(x \right)} + 1}\) \( \frac{dy}{dx} = \) ()
(E) \(y = \left(x + 1\right) \left(x^{2} + 5 x + 2\right)\) \( \frac{dy}{dx} = \) ()
(F) \(y = \left(x - 1\right) \left(x^{2} + 1\right) \left(x^{3} - 2 x\right)\) \( \frac{dy}{dx} = \) ()
(G) \(y = a x + b\) \( \frac{dy}{dx} = \) ()
(H) \(y = a x^{b}\) \( \frac{dy}{dx} = \) ()
(I) \(y = \tan{\left(x \right)}\) \( \frac{dy}{dx} = \) ()
(J) \(y = \frac{\tan^{2}{\left(x \right)}}{2}\) \( \frac{dy}{dx} = \) ()
(K) \(y = a e^{x}\) \( \frac{dy}{dx} = \) ()
(L) \(y = 2 \tanh{\left(x \right)}\) \( \frac{dy}{dx} = \) ()
(M) \(y = \frac{\tanh^{2}{\left(x \right)}}{2}\) \( \frac{dy}{dx} = \) ()
(N) \(y = \log{\left(a x \right)}\) \( \frac{dy}{dx} = \) ()
(O) \(y = \frac{\log{\left(x \right)}}{\log{\left(a \right)}}\) \( \frac{dy}{dx} = \) ()
(P) \(y = \log{\left(\cosh{\left(x \right)} \right)}\) \( \frac{dy}{dx} = \) ()
(Q) \(y = \frac{e^{x} - e^{- x}}{e^{x} + e^{- x}}\) \( \frac{dy}{dx} = \) ()
関数に対数が含まれる場合,\(x\)は対数の定義範囲とする.
\( \log(x) \)は底が\( e \)の対数とする.
\( \log_a(x) = \frac{\log(x)}{\log(a)}\)
双曲関数
\( \sinh( x ) = \frac{e^{x} - e^{-x}}{2} \)
\( \cosh( x ) = \frac{e^{x} + e^{-x}}{2} \)
\( \tanh( x ) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \)


選択肢

関数
(1)\(\frac{1}{\cosh^{2}{\left(x \right)}}\) (2)\(x \cos{\left(x \right)} + \sin{\left(x \right)}\) (3)\(6 x^{5} - 5 x^{4} - 4 x^{3} + 3 x^{2} - 4 x + 2\)
(4)\(\frac{2}{\cosh^{2}{\left(x \right)}}\) (5)\(- \frac{1}{\sin{\left(x \right)} + 1}\) (6)\(\frac{1}{\cos^{2}{\left(x \right)}}\)
(7)\(\frac{1}{a x}\) (8)\(\tanh{\left(x \right)}\) (9)\(\frac{\tan{\left(x \right)}}{\cos^{2}{\left(x \right)}}\)
(10)\(- \cos{\left(x \right)}\) (11)\(\frac{1}{x \log{\left(a \right)}}\) (12)\(- \frac{x \sin{\left(x \right)}}{\cos{\left(x \right)}} + \log{\left(\cos{\left(x \right)} \right)}\)
(13)\(3 x^{2} + 12 x + 7\) (14)\(a\) (15)\(\frac{1}{x}\)
(16)\(- \tan{\left(x \right)}\) (17)\(\cos{\left(x \right)}\) (18)\(a e^{x}\)
(19)\(a b x^{b - 1}\) (20)\(\frac{1}{\sin^{2}{\left(x \right)}}\) (21)\(- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}\)
(22)\(\frac{\tanh{\left(x \right)}}{\cosh^{2}{\left(x \right)}}\) (23)\(x e^{x - 1}\) (24)\(\sin{\left(x \right)}\)